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where {xi}
 N

= 1 are real eigenvalues of X. If X= X ( w ) is a random Hermitian
matrix on a probability space (Q, P) in some sense, for each (a, of course, the
equation above also holds. Can we make sense of it after taking expectation?
In other words, do there exist probability measures {u i(dx)}N

= 1 on R
satisfying
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Let X be an N x N Hermitian matrix, then it is elementary fact that
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We consider the expectation of the determinant det(L — X) -1 for I m A > 0
associated with some random NxN matrices and factorize it into N Stieltjes
transforms of probability measures. Moreover, using this factorization, we
investigate the limiting behavior of the logarithm of the quantity as N-> o.
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where E is the expectation with respect to P. This problem is considered as
an example in order to investigate some quantities related to scattering
problems for discrete Schrodinger operators.
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In ref. 3 they used the so-called Krein's spectral shift function defined by

where gL (a , a) is the green function (or the resolvent kernel of L =
—A + V). This is an important quantity in the scattering theory and using
it they showed several trace formulas for one-dimensional Schrodinger
operators systematically.

The author dealt with general graphs in place of the real line R
and showed two types of trace formulas.(7) In this case, the quantity
Im log det Gl is used instead of Im log gx(a, a], where GL is a finite matrix
whose elements are the green functions. It is important to know the proper-
ties of det GA in our setting.

Let G be an infinite graph and A the discrete Laplacian on l2(G)
which is defined by A = P — I, where P is a transition operator. Let V be
a real-valued bounded function on G and L= —A+ V. Using the green
function gL(x, y) of L, for a finite subgraph A of G, we define a \A\ x \A\
finite matrix GA = (g L (a , b ) ) a , b e A . Then we can show the following:

Proposition 1.1. Let GA be the matrix defined as above and let
a ( L ) be the spectrum of the discrete Schrodinger operator L. Let N be the
cardinality of A. Then det GA is non-zero analytic on C\[L0, A o ] , where
A0 = inf O(L) and Ao = sup o ( L ) . Moreover, it has an integral representa-
tion, that is, there exists a positive probability measure on a ( L } N such that

Here we omit the proof, however, it is important to remark that from
the way of the construction of the measure v(dx1 • • • dxN) is not a product
measure.

We give an example which can be easily calculated.

Example 1 .2. Let G be a d-regular tree and A an arbitrary connected
finite subset of G with cardinality N. Let P be the transition operator
associated with the simple random walk on G, A = 1— P and V=0. In this
case, L = —A, It is well known that O( —A) = [1 — a, 1+a] where oc =
a.d = 2 S J d — 1/d. By Proposition 1.1, det GA is represented by the integral
of the form (1.3). However, we can choose a product measure instead of v
in Proposition 1.1
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This example shows the possibility of choosing a product probability
measure without changing the integral. Moreover, from this example, we
can conclude that

This implies the semi-circle law.
In view of Proposition 1.1 and Example 1.2, it is natural to ask that

for a probability measure v on R", do there exist probability measures
{ u i ( d x ) } N

= i on R such that

This means that the left-hand side is factorized into N Stieltjes transforms.
The first question (1.1) can be considered as the same one as above since
there exists a probability measure v(dx1 • • • d x N ) on RN (which is the joint
distribution of N eigenvalues and not in general a product measure) such
that

In general, the answer of the question is a no. For example, we take a
probability measure l/2(d (1 ,1) + d ( _ 1 , _1) on R2 as v where d ( a _ b ) is a unit
mass on (a, b) e R2, and we have

The right-hand side has a zero in the upper half plane. But, if the left-hand
side could be factorized into two Stieltjes transforms, it cannot have any
zero in the upper half plane, and it is a contradiction. However, we conjec-
ture that the question above can be affirmatively solved for measures which
come from determinants in some sense.

In this paper, as an example for the question above, we deal with a
certain class of random matrices which is closely related to the Gaussian
Unitary Ensemble, and we will show the possibility of a factorization and
the semi-circle law for simple cases as an easy corollary to it.
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Let HN be the space of all NxN Hermitian matrices, i.e.,

where MN is the totality of N x N-matrices. We consider the following
probability measure on HN:

where V is a real-valued function, dX is the Lebesgue measure over N2

independent elements of matrices, ZN is a normalization constant (a parti-
tion function).

Now, Xe HN can be diagonalized as

where D is a diagonal matrix with elements {x 1 ,x 2 , . . . ,xN} . Noting that
Tr V(X) depends only on the N eigenvalues of X, we integrate all variables
except { x 1 , x2,..., XN}. Then we obtain the joint eigenvalue distribution of
{ X 1 , X Z , . . . , X N } as follows:

where CN is a normalization constant which is called Selberg integral.(8'9)

Now we consider the following quantity

where EN is the expectation with respect to the probability measure PN
on HN. Then we have

We consider more general setting than above problem. Let n(dx) be a
probability measure on R with moments of all order and infinitely many
points of increase. We define
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Our theorem is the following:

Theorem 1.3. Letpn(x) be an orthonorma! polynomial of degree «
with respect to the measure U (dx) . Then

where A1,,..., X N _ 1 are the zeros of p N _ 1 ( x ) , k N _ 1 i s the highest coefficient
of the polynomial pN-tM and Sa(dx) is a delta measure on a.

Remark that this theorem means IN is factorized into N Stieltjes trans-
forms of probability measures. One can regard it as a generalization of the
fact that the determinant of a matrix can be factorized into its eigenvalues.
This factorization is not unique.

Next we deal with the case that u ( d x ) is supported on the finite inter-
val and absolutely continuous with respect to the Lebesgue measure. Then
by using Theorem 1.3, we obtain the corollary.

Corollary 1.4. Let u ( d x ) be supported on [ — 1,1] and be
absolutely continuous with respect to the Lebesgue measure so that

where u N (dx 1 d x 2 - - - d x N ) = u ( d x 1 ) n(dx2) • - - U ( d x N ) and

Then we have

where this convergence is compact uniformly on Im A > 0.

Remark that this corollary implies so-called Wigner's semi-circle law(5)

for the distribution of the eigenvalues of Hermitian random matrices and
[-1,1] can be replaced by general [a, b], Various results for more



1454 Shirai

general cases have been obtained by many authors, for example, refs. 4
and 6.

2. A FACTORIZATION OF l N (A )

In this section we will factorize IW(A) into N products of Stieltjes trans-
forms of probability measures. First we decompose the reciprocal of a poly-
nomial into the partial fraction

Then by symmetry of ( x 1 , x2,..., XN) we have

We prepare a lemma.

Lemma 2.1. Let f ( x 1 , x 2 , . . . , x N ) be a polynomial of degree less
than 1 N ( N - 1 ) . Then,

Proof. It is sufficient to show the lemma for f ( x 1 , x 2 , . . . , x N ) =
x

1
x

2 . . . X
N where a, + a2 + ••• +aN < 1 N ( N - 1). Noting that

II1-<i<j<N(x i —xj) is the Vandermonde determinant, we obtain
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However, when a 1 +a 2 + ••• + a N < 1 N ( N — 1 ) there exist distinct iandj
such that ai = aj. Then If=0. |

Corollary 2.2. If 0 < n < N - 1 then

Remark 2.3. We define a polynomial of degree N — 1

Corollary 2.2 implies that gN-1 is a constant multiple of orthogonal poly-
nomial of degree N — 1 with respect to the measure du, (see ref. 8), where
the system of orthogonal polynomials with respect to the measure du is the
Schmidt's orthogonalization of 1,x,x2,... with respect to the inner product

Now we consider a linear operator formally defined by

Proof. It is trivial since the degree of X n n 2 < k < / < N (xk -xl) is
1 ( N - 1 ) ( N - 2 ) + n. |
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Then by simple calculation we obtain

especially, putting f ( x ) = xm we have

Then we have the following lemma.

Lemma 2.4. Let p be a polynomial of degree less than N. Then

Proof. It is trivial from Corollary 2.2. |

Next we prepare a lemma about the zeros of orthogonal polynomials.

Lemma 2.5. Let du be a measure on ICR1 and be pn(x) be an
orthogonal polynomial of degree n. Then pn(x) has n distinct zeros in /,
that is, there exist n distinct real numbers An,1 ,, An,2,..., A n _ n such that

Proof. See ref. 8.

Remark that since g N _ 1 ( x ) is an orthogonal polynomial of degree
N — 1 , by Lemma 2.5, there exist A1, A 2 , . . . ,A N _ , eR such that
g N - 1 ( x ) = C N _ 1 ( x - A 1 ) - - - ( x ~ A N _ 1 ) .

Now we proceed the calculation of IN(A). Since gN - 1(*i) is a poly-
nomial of degree N —1, using Lemma 2.4, we get
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Since

we obtain

where Sa is a delta measure on a and {Li}i=t are the N—1 zeros of
g N - 1 ( X ) . Then we have the factorization of IN(A.) in the sense above.

Theorem 2.6. Let pn(x) be an orthonormal polynomial of degree «
with respect to the measure n(dx}. Then we have the following factoriza-
tion ofIN(A):

where A1,..., A N _ 1 are the zeros of p N _ 1 ( x ) , k N _ 1 is the highest coefficient
of the polynomial p N - 1 ( x ) and Sa(dx) is a delta measure on a.

Proof. It is easy to see that S /N /C N C N -1 gN-1(x) is an orthonormal
polynomial pn(x).

3. THE LIMIT (1/N) log / N (A) /N AS N-> oo:
A COMPACT SUPPORT CASE

In the previous section we do not put any assumption on the support
of a measure u (dx) . In this section, we assume that the measure u ( d x ) is of
compact support and calculate the limit of ( 1 / N ) log I N ( L ) as N-> oo.
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Let n(dx) be a probability measure of compact supportI= [a, b~\. In
this case, we can have an estimate: for IM A >0 and any NeN

Then we obtain

Hence, by Theorem 2.6, all we have to do is to calculate

Further we assume that u ( d x ) is supported on [ — 1, 1] and absolutely
continuous with respect to the Lebesgue measure so that

In this case Szego has obtained the asymptotic behavior of pN{x) and the
highest coefficient kN0 of pN(x).

Theorem 3.1 (Szego). Let f be a function on [ — 1,1] satisfying
w i t h f e L1(dx), l o g f E L 1 d x ) and pn(x) be the orthonormal polynomial
with respect to f dx and kn is the highest coefficient of p n ( x ) . Then, as
n - > o , for LEC\[-l, 1],

where Cz and D are constants and Cz depends only on z e C, and
A = (z + z - 1 ) / 2 , \z\>1. This holds uniformly for \ z \>R>1.

Proof. One can refer to ref. 8, Chapter XII. |

Using Szego's result we immediately obtain the following theorem:

Theorem 3.2. Let n(dx) be supported on [ — 1, 1] and be absolutely
continuous with respect to the Lebesgue measure so that
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Then we have

where this convergence is uniform on a compact set in 1m A > 0.

Proof. By Theorem 2.6, we have
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where kN0 is the highest coefficient of the Nth orthogonal polynomial
pN(A). Noting that the conformal mapping A = (z + z - 1 ) /2 maps the set
{zeC; | z |> l} onto C\[ —1, 1] and using Theorem 3.1, we obtain the
theorem. |


